" 如果一篇论文提出了某种不同的训练方法,OpenAI 内部会嗤之以鼻,认为都是我们玩剩下的。但是当新的 AI Agents 论文出来的时候,我们会十分认真且兴奋地讨论。普通人、创业者和极客在构建 AI Agents 方面相比 OpenAI 这样的公司更有优势。" OpenAI 联合创始人,前 TeslaAI 总监 Andrej Karpathy 说道。
Karpathy 的公开发言为 AI Agents 添了不少热度。但他的判断并非一家之言。
早在 3 月份,AutoGPT 就在 GitHub 上获得 7.4 万星,并快速成为史上 Star 数量增长最快的开源项目;而后发布的 BabyAGI、AgentGPT 更如雨后春笋般涌现:订购披萨、整理邮箱、创建博客,甚至举办一场情人节派对……
越来越多的 AI Agents 出现在人们生活的各个场景下,热潮迅速开始从硅谷蔓延。
自主执行、独立运作,AI Agents 被科技人士给予极高的期待,认为其是 " 变革社会的生产力工具 "。更有人将其视作 " 通往通用人工智能(AGI)时代的开始 "。
但呼声并不能掩盖现存的问题。
" 大模型是 AI Agents 的前提,有了足够好的硬件基础后,才能去发展 AI Agents。" 真格基金管理合伙人戴雨森对「甲子光年」表示。
严格来说,市面上只有 ChatGPT 一个 " 合格 " 的大模型底座。受制于模型算力,国内仍然缺乏 AI Agents 的开发土壤。
未来美好,现实残酷。技术研发与创业投资等都在摇摆中进行。AI Agents 的红利期何时真的伴随大模型浪潮而来,谁都不得而知。但可以肯定的是,改变已悄然开始。
AI Agents:帮你做事的 " 数字助理 "
与其把 AI Agents 当作 ChatGPT 升级版,不如将它视作人类的 " 数字助理 " 更为合适。
它不仅告诉你 " 如何做 ",更会 " 帮你做 "。作为一种媒介,AI Agents 代替人类与 GPT 等大语言模型(Large Language model, LLM)进行反复交互,只要给定目标,它便可以模拟智能行为,自主创建任务、重新确定任务列表优先级、完成首要任务,并循环直到目标达成。
与传统的人工智能不同,AI Agents可以在没有人类控制的情况下独立运行。通过接入 API,AI Agents 甚至可以浏览网页、使用应用程序、读写文件、使用信用卡付款等等。
简单来说,只需要给它一个目标,AI Agents就能完成剩下的全部工作。例如 HyperWrite 研发的 AI agent 通过 Chrome 浏览器的控制程序来自动帮你订购披萨。这种想象放在科幻电影里并不难,但在人工智能探索历程上,已经持续了将近半个世纪。
大语言模型是 AI Agents 的核心大脑。通过拆解复杂任务,可以将复杂的用户需求拆解为可实现的任务方式。
一方面,大模型的训练建立在互联网的基础上包含了大量的人类行为数据,弥补了构建可信 AI Agents 的关键要素。另一方面,在可观的知识容量下,大模型涌现出优秀的上下文学习能力、推理能力。通过建立思维链来实现模型的连续思考和决策,AI Agents 可以分析复杂问题,并将其拆解成简单、细化的子任务。
与此同时,LLM 以语言作为媒介也改变了前端的交互形式。BV 百度风投 AI 应用赛道负责人,投资副总裁温永腾告诉「甲子光年」:"BV 百度风投很早就开始关注 AI Agents 的发展,通过研判,我们认为原先的图形用户界面(GUI)有可能转变为语言用户界面(LanguageUI),AI Agents 的前端应用将存在于所有可能与人类交互的前端形式之中。"
就像人类一样,在从事复杂任务时,每一步之间往往会有一个推理过程。AI Agents 也会借助 ReAct 组件(Reasoning and Acting),将大模型的推理能力和行为决策紧密结合起来,使语言模型可以根据知识进行有逻辑地计划安排。
Reflexition 框架则为 AI Agents 提供动态记忆与自我反思的能力。通过语言反馈而非更新权重的方式来强化 Language Agents,让它可以改进过去的行动决策、纠正过往的错误以不断提高自身表现。
在信息获取、储存、保留、检索的进程上,AI Agents 也力图模仿人类的记忆构成,构建高效的内存系统。
接替 LLM,AI Agents 成为下一个 AI 热点
ChatGPT 的诞生,实现了 AI 与人类进行多轮对话,并提供信息和建议的功能。Copilot 的推出,使 AI 足以承担为人类完成工作初稿的能力,例如 Github Copilot、Microsoft 365 Copilot、Midjourney,分别成为人们在编程、办公、图像生成领域中的 " 智能副驾 "。
告诉 AI 完成一件任务,它就能完成一件任务——撰写文案、回答问题,或者生成一张人类肉眼难以分辨真假的照片。而与此同时,人们也往往需要为 AI 的每一步行动提供具体清晰的提示。
此时的 AI 就像是初来乍到,没有任何经验,需要手把手教导的实习生。但是,如果你想要一个听指令办事,执行中遇到困难自己解决,尽量不给人添麻烦的好员工呢?
OpenAI 联合创始人兼 CEO Sam Altman 曾在多个场合表示,构建庞大 AI 模型的时代已经结束,智能体才是挑战。
AI Agents 赛道的发令枪已经打响,只不过,这绝对不是短短几个月内的冲刺,而是注定要长达几年,甚至跨越十年的长跑马拉松。
152 6996 6441